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Abstract

Research shows that high arsenic exposure harms children’s development, but its ef-
fects in high-income countries or at lower concentrations remain unclear. This study
examines how arsenic-contaminated water affects children’s attendance and test scores
in Maryland. I use a unique dataset linking school-level water treatment and local
arsenic concentrations to estimate students’ exposure. My findings suggest reducing
in-school arsenic exposure through water treatment improves attendance but has little
effect on test scores. Effects vary across grade spans, underscoring the need for further

research to understand the consequences of arsenic exposure.



1 Introduction

In the United States, concerns about access to clean drinking water are growing, particularly
in the wake of water crises involving toxins such as lead. In schools, water purity is often
unknown and threatened by outdated infrastructure and a lack of water treatment centers.
Many states have taken action to address these concerns and improve students’ water qual-
ity, but testing and policies are limited to pollutants with well-established negative impacts,
namely lead. Contaminants like arsenic are often overlooked, and their effects on adoles-
cents are not well-established. Economic research on arsenic is limited to countries such as
Bangladesh and China, where childhood exposure to high concentrations of arsenic has been
linked to decreased intellectual function, test scores, earnings, and productivity (Asadullah
& Chaudhury, 2008} Pitt, Rosenzweig, & Hassan, 2021; \Wang et al., [2007). This paper seeks
to be the first to establish the impact of arsenic on children’s educational outcomes in the
United States and the overarching context of high-income, developed countries.

This paper focuses on elementary and middle school students in Maryland, where expo-
sure to arsenic occurs through contaminated drinking water resulting from a high natural
occurrence of arsenic in underground aquifers and the high prevalence of well water use within
schools and households. Students’ water treatment status is based on access to public water
utilities or treated well water at the school level. This is combined with inferred arsenic
exposure based on contamination in the well geographically closest to the school and acts as
a proxy for potential exposure, allowing me to study this under-researched contaminant.

To understand how arsenic exposure impacts students’ attendance and test scores, I
leverage geographical variation in arsenic contamination and the timing of school-level water
treatment in a difference-in-difference estimation strategy, employing stacking estimation
as used in |Cengiz, Dube, Lindner, and Zipperer, (2019). Unlike other staggered timing
difference-in-differences approaches such as |Callaway and Sant’Anna; (2021) and [Sun and
Abraham)| (2021)), stacking supports both binary and continuous treatment, allowing for a

consistent methodology across school and cohort specifications while avoiding concerns of



bad comparisons biasing results.

My findings suggest that arsenic negatively impacts attendance. I observe a significant
decrease in the percentage of students missing more than twenty days of schools, and an
increase in the percent of students missing fewer than 5 days of school. Limited effects are
observed for math or reading testing proficiency. Results are heterogeneous between elemen-
tary and middle schools, suggesting the potential for differential impacts across students’
ages. Additionally, results are robust to different specifications of arsenic exposure.

In addition to its policy relevance, my research supports three different facets of the
economics literature. First, this paper adds to the literature on the impact of environmental
pollution on children’s educational outcomes. Existing literature has established the negative
impacts of air and soil pollution on children’s test scores, attendance rates, and behavior,
especially as a result of lead pollution (Aizer & Currie| [2019; Aizer, Currie, Simon, & Vivier),
2018; |Gazze, Persico, & Spirovskaj, 2022; [Hollingsworth, Huang, Rudik, & Sanders, 2025)).
This paper expands the limited subset of such research relating to water pollution to provide
a more comprehensive understanding of the different elements of children’s environments
and their potential impacts. My findings suggest that arsenic may have similar impacts.

Using hand-collected school water treatment data, I enhance the literature on the effects
of arsenic, which is limited primarily to high concentration levels in low-income countries.
Existing studies have access to survey data containing individual-level arsenic exposure from
wells, urine measurements, and toenail clippings and find adverse impacts on boys’ test
scores, intellectual function, and cognition that manifests into lower schooling attainment
and earnings (Asadullah & Chaudhury, [2008; |Pitt et al., 2021} [Wasserman et al., 2004]).
However, conclusions from these studies may not be externally valid to the context of the
United States due to differences in level and circumstance of exposure. I find that arsenic
may negatively impact students’ health and development at low levels of exposure in high-
income countries. Reducing exposure results in attendance improvements, and positive but

insignificant improvements in testing proficiency.



My results also suggest arsenic exposure below the EPA-regulated limit may negatively
impact students’ development, which is currently only established in the medical literature.
Similar to results for lead or high exposure to arsenic, chronic low-dose exposure to arsenic
in my sample also make students physically ill, resulting in decreased attendance. To further
enhance the understanding of acute versus chronic exposure, my study derives the cumulative
effects of arsenic exposure over a student’s time in school to understand the importance
of length and intensity of exposure. This differs from existing pollution studies, which
traditionally exploit students’ one-time exposure to contaminants.

Overall, my findings suggest that arsenic may negatively impact the attendance and test-
ing proficiency of elementary and middle school students, and this effect may vary across
different schools and age groups. The small sample size and insignificant results for test
scores underscore the need for continued research to understand the nuanced effects of ar-
senic exposure in high-income countries. Lastly, this study highlights the importance of
re-evaluating existing regulations and policies to ensure students have access to clean drink-
ing water in schools and tests the longstanding EPA regulation for arsenic, which currently

permits contamination of up to 10 micrograms per liter (ug/L) in drinking water.

2 Background

Arsenic is a carcinogenic and neurotoxic metalloid that exists in the natural environment
and is a byproduct of industrial, mining, and farming activities. Its widespread presence
puts millions of individuals worldwide, including in the United States, at risk. While most
exposure occurs through drinking water, it can also occur by consuming contaminated foods
or exposure to contaminated soil, dust, or treated wood, posing a significant and severe
health risk (ATSDR), 2007). Often only presenting symptoms after prolonged exposure, the
most common side effects of arsenic exposure in adults are skin lesions and internal cancers

(Council, |1999)). In children, arsenic negatively impacts brain function and development by



stunting the brain’s growth and degrading existing neurotransmitter systems (Htway, Sein,
Nohara, & Win-Shwe, [2019)). Early life and in-utero exposure to arsenic is incredibly harmful
and can manifest in memory, intelligence, and attention problems and increased mortality as
a result of a higher likelihood of cancers (Smith et al.,|2006; Tolins, Ruchirawat, & Landrigan,
2014} Tsai, Chou, The, Chen, & Chen, 2003). Therefore, removing arsenic from students’
drinking water should theoretically improve test scores and behaviors.

Concerns about arsenic exposure are particularly relevant given that 43 million people in
the United States consume water from groundwater wells, and an estimated 2.1 million peo-
ple drink from wells with arsenic concentrations above the EPA standard of 10 ug/L (Ayotte,
Medalie, Qi, Backer, & Nolan| 2017; |DeSimone, Haminton, & Gilliom| 2009). In Maryland,
where arsenic is naturally occurring and not expected to be related to anthropogenic con-
tamination, it is estimated that 13% of residents rely on wells (MDE, 2010). Surveys of
these wells found arsenic contamination ranging from below detection limits (generally 2
ug/L) to 131 ug/L, with approximately 37% of sampled wells having detectable arsenic and
10% of sampled wells having concentrations above 10 ug/L (Drummond & Bolton, 2010).
Figure (1] highlights the geographical variation in contamination across Maryland, with the
contours indicating exposed areas and darker contours indicating areas of higher exposure.
Contamination is most prevalent in the Aquia and Piney Point Aquifers, which largely affect
the southeastern portion of the state (Figure [1]).

Arsenic exposure is difficult to identify because arsenic is colorless, odorless, and tasteless
in drinking water, therefore people are unlikely to know they’re being exposed to arsenic
without a water test. Further, testing humans for arsenic exposure is more challenging
than testing for lead, which can be done easily with a blood test. Urine tests for arsenic
indicate recent exposure but cannot accurately predict what level of arsenic a person has
been exposed to or absorbed. Fingernail clippings provide more accurate results for long-
term exposure, but only for high levels, and are difficult to obtain. Therefore, measuring

the treatment status of wells likely to contain arsenic is useful for gauging exposure to this



Figure 1: Piney Point and Aquia Aquifer range in Maryland
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elusive contaminant.

Arsenic cannot be naturally abated by the environment; it can only change form and be
removed by being attached or separated from other particles through treatment and filtra-
tion. EPA-acceptable methods for arsenic removal include pre-oxidation, pH adjustment,
ion exchange, activated alumina (AA), reverse osmosis (RO), enhanced lime softening, and
enhanced coagulation/filtration (EPA||1999)). Water treatment facilities in the United States
must filter and treat their water to ensure that it meets quality standards enforced by the
EPA before distributing it to customers such as schools. Both the WHO and EPA suggest a
10 ug/L standard for arsenic in drinking water. The EPA also reports adverse health effects
at exposure levels of 3, 5, 10, and 20 ug/L (EPA, [2000)). However, the current legal limit of
10 ug/L is the result of a cost-benefit analysis weighing adverse effects on health with high
remediation costs (EPA| 2000).



3 Empirical Strategy

This study examines the effects of arsenic exposure on students’ attendance and test scores
by analyzing changes in arsenic exposure at the school level. Specifically, I evaluate how the
implementation of water treatment affects these educational outcomes. Pre-existing arsenic
groundwater concentrations approximate students’ potential exposure, and changes in school
water treatment are used to exploit plausibly exogenous changes in this exposure. Results
reflect the effects of reducing potential exposure to arsenic. Specifications are provided first
at the school level, which is the level of treatment, and then at the cohort level to exploit
further variation in duration and intensity of exposure (Appendix .

At the school level, I investigate if removing arsenic from drinking water through water
treatment affects attendance and test score outcomes. To do so, I create treatment-year-
specific datasets corresponding to the year schools begin treating their water, ranging from
2003 to 2023. Each h-specific dataset, referred to as a ”stack”, includes the schools treated in
year h and control schools. Control schools are other schools in Maryland that do not receive
treatment in the 11-year window (¢t = —4,..,6) around year h. This window represents the
years a student may attend the school before their outcomes are observed. All other schools
are dropped from the stack to avoid negative weighting by bad comparisons between early
and late-treated schools. All stacks are then appended into one dataset for analysis to

maximize power and estimate the average effect across event times, 3;. The specification is

as follows:
6 6
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with corresponding differences in differences specification:
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Ysarn Tepresents attendance or test score outcomes for school s in district d observed in
year t. Attendance outcomes include the percentage of students who miss more than 20 days
of school (high absenteeism) and the percentage of students who miss fewer than five days of
school (low absenteeism). Test score outcomes are presented as the percentage of students
who score proficient or better on reading or math exams at school s in year ¢, weighted by the
number of test takers in each grade. The results will discuss these simply as the percentage
of proficient students.

Dy, 4~ is a binary variable equal to one if school s is treated in year t. This occurs if a
school supplies clean, treated water that is free from contaminants, i.e., arsenic, to students.
This can occur in two ways: (1) schools connect to a public water utility that monitors
water quality and treats the water for contaminants, or (2) schools begin treating well water
on-site. Exposure to lead is not expected to change with this form of treatment because it
is usually present in the school’s piping and not in the source water. Schools are considered
always treated if their water has always come from a public utility or a treated well, and
never treated if the opposite is true. To proxy for the severity of exposure at each school,
Arsenicg is equal to one if the concentration of arsenic in the closest measured groundwater
well is greater than three ug/L. This measure is chosen because it is the lowest measure
found by the EPA to induce negative side effects (EPA, 2000). While 10 ug/L is the EPA
maximum allowable concentration and would be a preferable comparison, my small sample
size hinders precise estimation at this level.

The coefficients of interest from Equation 1, 7,, represent the impact of water treat-
ment on student outcomes over time. Specifically, they capture the change in test scores
or attendance for schools with arsenic exposure greater than three ug/L relative to their
pre-treatment baseline and relative to control schools. I can use these coefficients to assess
how the effects of treatment evolve over time and if the effects are immediate and sustained.
Positive coefficients for test scores indicate improvements post-treatment and highlight the

negative impacts of arsenic exposure. For attendance results, a similar conclusion can be



drawn for negative coefficients in the high absenteeism results and positive coefficients in
the low absenteeism results. The event study plots in Figure [3| display these patterns, while
Table (3| presents [ coefficients from Equation (2). These coefficients can be interpreted
as the aggregate post-treatment effect of removing students’ potential arsenic exposure via
water treatment.

This specification relies on the exogeneity of treatment timing, which cannot be confirmed
theoretically due to a lack of information regarding states, districts, or school-level decision-
making to implement water treatment. Existing information regarding connections to public
water utilities or the decision to treat well water does not indicate that this decision is driven
by arsenic exposure. One potential explanation could be that economies of scale drive
this decision; as communities grow larger it is more economical to provide public utilities.
District-by-year fixed effects, (04 - t), control for time-varying factors that could influence
the decision to implement water treatment, such as changes in district composition, policies,
or funding opportunities. Including these fixed effects reduced potential biases related to
endogeneity in the timing of treatment adoption.

Additional elements in this specification include controls observed for all schools in 2002,
Xstaons - t- These controls include pupil-to-teacher ratio, the percentage of students receiv-
ing subsidized lunch, the proportion of non-White students, and the percentage of female
students. These controls capture differences in school-level resources and demographics, con-
trolling for correlations between resources, race, and income with test scores and attendance
outcomes. To maintain consistency across schools, all controls were observed in 2002, the
year before I observed outcomes. Due to many schools treating their water before I observe
characteristic information, including characteristics gathered from different points in time
and treatment statuses’ would not produce accurate comparisons. Further, school-by-stack
(0sr,) and year-by-stack (d;,) fixed effects account for unobserved time-invariant differences
across schools within stacks and time-varying shocks impacting all schools within stacks,

respectively. Standard errors are clustered at the school level because it is the level of



treatment.

The previously outlined school-level specification provides an overview of arsenic’s impact
but could be improved by following the same students over time. Without individual-level
data, I extrapolate cohort-level math and reading outcomes from grade-level proficiency.
Attendance data is not availible at the grade level, so I do not include cohort-level attendance
estimates. I use this information to build “cohorts” that are unique at the school and start
year level, which allows me to track the same students over time and estimate the length of
their exposure, gaining power and precision. This method assumes a consistent cohort and
cannot account for attrition from students who are held back or switch to another school.
The cohort specification and results are included in Appendix |B| and support the results of
the school-level analysis.

For both methodologies, the two-way fixed effects (TWFE) methodology may be biased
in this specification due to the staggered timing of water treatment, particularly if treat-
ment effects are heterogeneous across periods. More specifically, because treatment occurs
at different times, TWFE may incorrectly calculate treatment effects by using comparisons
between early- and late-treated groups, which no longer follow parallel trends. To address
this concern, I use the stacking approach outlined by Cengiz et al. |Cengiz et al.| (2019) to
manually remove comparisons between early and late-treated groups from the specification,
which could otherwise bias results. Employing the most up-to-date stacking methodolo-
gies, I also estimate the stacked model using weights introduced by Wing, Freedman, and
Hollingsworth Wing, Freedman, and Hollingsworth| (2024), who suggest that if the number
of units treated in each period differs, traditional stacking methods could be biased and
driven by the treatment effects of few schools. Instead, this specification weights results in
the average treatment effect by the proportion of treated units in each stack, which resolves
this concern. These results are presented in Appendix A.

This study assumes that, without treatment, the potential outcomes for treated and

untreated schools would follow parallel trends. The adherence to parallel trends can be



observed in the event study plots of Figure Additionally, I do not expect anticipation
effects to bias estimates. While there is no uniform or formal notification of water treatment
implementation, secondary notification through news channels or rumors might influence
outcomes. However, I did not find substantial evidence of these forms of notification and
do not believe they will significantly affect student or parent decisions or school procedures
before treatment. Estimates could still be biased if time-varying school-specific factors are

covariant with students’ attendance or test scores.

4 Data

4.1 School Data

To assess the impact of arsenic contamination on children’s educational outcomes, I com-
pile data from local, state, and national sources to understand pollution levels, children’s
educational indicators, and treatment status. I limit my sample to public elementary adn
middle schools. To understand which schools are most impacted by arsenic-contaminated
drinking water, I collect arsenic well testing results from the United States Geological Survey
(USGS), Maryland Geological Survey (MGS), and the National Water Quality Monitoring
Council (NWQMC). Combining these sources provides the most robust geographic coverage
to provide a more reliable understanding of students’ exposure, with over 1,509 unique ar-
senic results after removing duplicates from the same well, retaining the measure with the
highest concentration.

Arsenic cannot be detected in very small amounts using current testing procedures. The
USGS has a minimum detection limit of 1 ug/L, MGS of 2 ug/L and the NWQMC includes
a variable for “not detected”. In these situations, I record the arsenic measure as a zero.
Concerns regarding the number of zeros or undetected arsenic measures are expected to bias
results toward zero and could result in an underestimation of the true extent and impact

of contamination. To decrease dependence on zeros, I provide alternative specifications in
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Table[5| that use the average and maximum across the two closest wells and observe relatively
consistent results across specifications.

Figure 2: Map of school locations shaded by arsenic concentration
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From this comprehensive data, I extracted the coordinates and measured arsenic concen-
tration from each well. Using ArcGIS, I mapped each school to the geographically closest
well using coordinate matching. The measured concentrations at the school level are dis-
played in Figure 2] highlighting the geographical variation and intensity of exposure. The
geographical variation in this figure mirrors that of Figure [I] which indicates that arsenic
is largely concentrated in the Piney Point and Aquia aquifers. Other notable areas of high
concentration include western Maryland, which also has pockets of arsenic-contaminated
groundwater. In this figure, each point represents an individual school. Dense clusters of
schools indicate urbanicity, which visually appears to be negatively correlated with arsenic
exposure.

To assess the impact of arsenic exposure on these outcomes, I leverage school-level water
treatment status. This information was hand-collected from each school district in Maryland

through a series of Public Information Access requests of schools, public facilities, and other
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Table 1: School-Level Treatment Decomposition

Concentration Never-Treated Treated Always-Treated Total

As=0 19 75 476 270
0<As<3 8 20 75 103
3<As<h 6 4 7 17
5 <As <10 8 7 16 31
As > 10 3 5 7 15
Total 44 111 081 736

organizations and cross-referenced with school master plans and news articles when available.
The collected information contains the school’s water source (groundwater well or public)
and the year the school begins receiving water from that source. If schools are on well water
and begin filtering water within the school, the date of treatment activation is recorded.

Treatment status for Garrett, Howard, and Kent County school districts is unavailable,
so they are excluded from the dataset. Baltimore City and Baltimore County districts are
also excluded because they started providing bottled water in all district schools during the
sample period. This change aimed to eliminate lead exposure from contaminated piping,
making these schools unsuitable as controls. Within the remaining districts, if information
regarding the start date of treatment is unavailable, the school is assumed to be always
treated, and the school’s operating date is used as a proxy.

Table [1| combines the concentration information from Figure [2| with treatment status
during the study period to provide an overview of the number of schools that fit into each
level of arsenic exposure and treatment status. The largest group of schools has low exposure
and is treated before the study period (“always treated”), followed by low exposure and
treated during the sample period, providing ample control observations for this study. For
schools that have arsenic exposure, most have exposure between five and ten ug/L.

Table 3 provides summary statistics for school and cohort characteristics and outcomes,
separated by treatment status, broken into four categories: never treated, treated during the

sample period, always treated, and no arsenic exposure.
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Public school characteristics are collected from the Common Core of Data (CCD). The
CCD is a panel of school characteristics from 1986-2022 compiled from surveys of each
school in the United States. From this source, I retain a school identifier, the type of school
(elementary or middle), the percentage of students receiving free or reduced lunch (used as
a proxy for income), the percentage of non-White students, and the percentage of female
students. I generate a variable for the pupil-to-teacher ratio, calculated as the ratio of school
enrollment to full-time equivalent teachers. The values of these variables from 2002, before
I observed any outcomes, are used as controls and remain consistent across time and do not
vary with the introduction of water treatment.

A few key differences in school characteristics across treatment status are observed in
Table 2| To start, treated schools have lower enrollment and subsequent lower pupil-to-
teacher ratios. This is likely a result of their more rural location, corresponding to the
lower portion and rightmost portion of Figure 2] Demographic characteristics are similar
across schools exposed to arsenic but differ from those in unexposed schools. Schools with
no arsenic exposure are more racially diverse and of lower socioeconomic status, which could
be correlated to their urbanicity.

The school outcomes included in Table [2] are sourced from the Maryland School Report
Card and include attendance and test score measures for all Maryland public schools, which
are published annually. Measures of attendance include the percentage of students who
missed more than 20 days (high absenteeism) and the percentage of students who missed
fewer than five days (low absenteeism). This information is collected from 2003-2023 and is
truncated at 5% and 95% by FERPA; this truncation is not expected to impact results. Low
absenteeism is relatively consistent across treatment categories, while treated schools have
higher rates of high absenteeism. A potential source for this variation could be lower access
to healthcare or other resources influencing children’s ability to attend school.

I compile test score information into the percentage of students scoring proficient or

better in math and the percentage of students scoring proficient or better in reading. These
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Table 2: School Level Summary Statistics

Never-Treated Treated Always Treated No Arsenic

Panel A: Arsenic Exposure

As Concentration 4.920 7.143 4.571 0.000
(3.463) (19.039) (12.322) (0.000)
As Avg of 2 Closest 4.380 5.614 4.505 0.182
(2.909) (9.948) (9.473) (2.356)
As Max of 2 Closest 5.040 8.400 6.438 0.365
(3.494) (19.133) (16.342) (4.711)
Panel B: Pre-Period School Characteristics
Enrollment 516.680 373.867 603.971 592.197
(212.166)  (178.146) (234.019) (231.776)
Pupil to Teacher Ratio 16.739 14.821 16.980 16.047
(2.200) (2.249) (2.375) (2.769)
% Female 0.497 0.481 0.486 0.485
(0.026) (0.025) (0.023) (0.027)
% Non-White 0.150 0.157 0.270 0.491
(0.114) (0.125) (0.232) (0.341)
% Receiving Free/Reduced Lunch 0.215 0.279 0.255 0.330
(0.118) (0.151) (0.188) (0.230)
Panel C: Outcomes
% Missed >20 Days 0.083 0.091 0.082 0.083
(0.027) (0.044) (0.034) (0.033)
% Missed <5 Days 0.345 0.337 0.364 0.383
(0.033) (0.060) (0.059) (0.060)
% Prof or Better Math 0.807 0.806 0.801 0.766
(0.098) (0.114) (0.098) (0.133)
% Prof or Better Reading 0.841 0.833 0.832 0.803
(0.062) (0.093) (0.081) (0.106)
N 25 36 105 570

This table includes school level characteristics. Measures of arsenic are presented as
micrograms per liter (ug/L). All outcome variables are average over the observed period.
All school characteristics are observed in 2002, the year prior to treatment. Treated and
never-treated are both limited to schools with arsenic exposure greater than 0.

results are from the Maryland School Assessment (MSA), which began testing 3rd through
8th grade students against a standard curriculum in 2003. I observe these test scores through
2016 when the standardized testing method was changed, rendering results in-comparable.
Further, concerns regarding a change in proficiency standards beginning in 2013 could result
in bias in an indeterminable direction, so proficiency measures from these years are excluded
from the estimation. The percentage of students in each grade that score basic (below

expectation), proficient (at expectation), or advanced (above expectation) are reported. I
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aggregate these outcomes to create the percentage of students scoring proficient or better
within each school and year and weight the estimate by the number of test takers in each
grade. Test scores and attendance outcomes are linked to CCD characteristics using a
common school identifier. Across treatment status, proficiency is relatively consistent, with
approximately 80% of students scoring proficient or better in math and 83% scoring proficient
or better in reading. This is likely correlated with the lower socioeconomic status, higher
racial diversity, and overall urbanicity of schools not exposed to arsenic (Gagnon & Mattingly,
2018; Reardon, Kalogrides, & Shores, 2019))).

The difference between treated and control observations in Table [2| suggests that there
may be underlying concerns about the endogeneity of treatment status. Differences between
treatment and exposure schools highlight the necessity of including controls to absorb factors
such as race and income, which would be correlated with test scores and attendance out-
comes. Further, my research did not uncover any information suggesting that the decision
to treat schools was driven by arsenic exposure in these areas. One potential motive could
be economies of scale, with the provision of community water treatment becoming more
cost-effective as populations increase, which I control for using district-by-year fixed effects.
Concerns of endogeneity influenced my decision to utilize a difference-in-difference approach
for estimation, which only requires that treated and control schools trend similarly in the

absence of treatment and allows for level differences.

5 Results

Event study estimates for school-level outcomes from Equation (1) are presented in Figure[3]
For comparability across specifications, four pre-periods and six post-periods are presented,
representing the years a student may attend school before being tested. Aside from reading
proficiency (Panel D), these event studies suggest that treated and untreated schools were

trending similarly prior to treatment.
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Figure 3: School Event Study Plots
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Note: These plots are a result of unweighted stacking regression from Equation (1) with
2002-level controls for pupil-to-teacher ratio, percentage of students receiving free lunch,
percentage of non-White students, and percentage of female students with district-by-year,
year-by-stack, and school-by-stack fixed effects. The horizontal axis measures years since
treatment, and the vertical axis is the percentage point change in the outcome of interest.

Standard errors are clustered at the school level.

Table 3: Difference-in-Difference School Results

Miss > 20 Days

Miss < 5 Days Math Prof Reading Prof

Arsenic> 3xPost -0.015* 0.019 0.021 0.021
(0.008) (0.013) (0.023) (0.023)
N 87412 87,412 59,280 59,306

Notes: Standard errors clustered at the school level are shown in parentheses. Estimates are
from the unweighted stacking regression of Equation (2) with 2002-level controls for pupil-to-
teacher ratio, percentage of students receiving free lunch, percentage of non-White students, and
percentage of female students. All regressions include district-by-year, year-by-stack, and school-
by-stack fixed effects. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.



Panel A suggests a small downward trend in the percentage of students missing more than
20 days of school. This result suggests a decrease of 1.5 percentage points on a mean of 9.1%
after treatment for schools with arsenic concentrations above three ug/L (Table[3). This re-
duces high absenteeism by approximately 16.5% and reduces the gap in absenteeism between
treated and always treated or no arsenic schools. This is supported by the upward trend in
students’ with very low absenteeism, missing fewer than five days of school (Panel B). Med-
ically, low-level chronic exposure to arsenic is known to be carcinogenic, but gastrointestinal
symptoms are often absent. My results suggest there may be some side effects of arsenic
exposure that affect students’ attendance beyond gastrointestinal symptoms and diversify
the understanding of the impact of arsenic on young student bodies. Comparatively, exist-
ing literature from Bangladesh finds that high exposure levels result in attendance changes
(Murray & Sharmin, 2015)).

Comparatively, the percentage of students scoring proficient or better on reading exams
only increases by 2.1 percentage points, and this result is not statistically significant (Panels
C and D). Other pollution research that finds that pollution exposure impacts math test
scores more than reading (Hollingsworth et al., [2025; |Jacqzl, 2022). However, this result is
not significant nor sustained across time, suggesting that arsenic exposure did not affect
proficiency. Wide confidence intervals in my estimates suggest substantial variation in treat-
ment effects. This is likely a result of the limited number of schools in my sample exposed
to arsenic and treated during the sample time, which could reflect unobserved heterogene-
ity within schools or varying degrees of true arsenic exposure. Future research with larger
sample sizes and more accurate exposure measures could help narrow these estimates. Still,
because no other research exists on lower-level exposure or exposure within the United States

for arsenic pollution, my results provide a reference point for future research.
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5.1 Heterogeneity Analysis

To understand which students are most impacted by exposure to arsenic, I split the sample
into elementary and middle school sub-samples and present these results in Table 4l These
results suggest that improvements to students’ attendance following water treatment are
larger for middle school students. 2.7 percentag points fewer students miss more than 20 days
of school, and 7.7 percentage points more students miss fewer than 5 days of schools. These
gains are smaller for elementary school students. For testing proficiency, when stratified by
grade span, results suggest that reading proficiency significantly increased by 3.1 percentage
points for middle school students, with insignificant effects for elementary reading proficiency,
or math proficiency in either school type.

One potential mechanism that may be driving this difference is the accumulation of
exposure over the student’s lifetime. As arsenic passes through the body, it is absorbed by
soft tissues such as the brain. The accumulation of arsenic in these soft tissues may only show
measurable effects after prolonged periods. This could also be compounded by the higher
neuroplasticity of younger children’s brains, allowing them to overcome damage by arsenic
better than middle school students. Alternatively, it could be that differences in the type
and level of learning within the middle school may be more impacted by the degradation of
cognition caused by the arsenic. Further, results suggest that there may be more significant
health improvements across middle school students’ lifetimes that allow them to attend school
more consistently once arsenic is removed. Overall, both groups are physically impacted by
the presence of arsenic in their drinking water and see their absenteeism decline after its
removal.

For comparison, Hollingsworth et al.| (2025)) find negative impacts of pollution on younger
and older children. For lead, which is similar to arsenic, exposure in young children com-
pounds into lower attainment and higher delinquency (Aizer & Currie, 2019; |Aizer et al.|
2018; (Chandramouli, Steer, Ellis, & Emond, 2009). However, it is also suggested that ex-

posure at age six may be more harmful than infantile exposure (Hornung, Lanphear, &
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Table 4: Heterogeneity by School Type

Elementary  Middle

Panel A: Missed > 20 Days

Arsenic> 3xPost -0.017*FF*  _0.027**
(0.006) (0.012)

N 71,083 37,566

Panel B: Missed < 5 Days

Arsenic> 3xPost 0.019 0.077**
(0.020) (0.034)

N 71,083 37,566

Panel C: Math Proficient

Arsenic> 3xPost -0.008 -0.005
(0.011) (0.034)

N 53,576 25,712

Panel D: Reading Proficient

Arsenic> 3xPost 0.006 0.031***
(0.032) (0.011)

N 53,576 25,505

Notes: Standard errors clustered at the school level are shown in
parentheses. Estimates are from the unweighted stacking regres-
sion of Equation (2) with 2002-level controls for pupil-to-teacher
ratio, percentage of students receiving free lunch, percentage of
non-White students, and percentage of female students. All re-
gressions include district-by-year, year-by-stack, and school-by-
stack fixed effects. The sample was split to retain only elementary
schools or middle schools and run separately. Significance levels:
*p<0.1, ¥ p <0.05 *** p <0.01.

Dietrich, 2009). This provides evidence to support my results that older children may be
more impacted by exposure. The heterogeneity in results highlights the inability of school-
level data to follow students’ exposure and outcomes across long periods, which requires me
to assume that middle school students’ treatment before entering the school is the same as
the middle school treatment status up to that point. This assumption could affect results
if middle school students’ exposure is much different than their elementary school exposure.
Overall, the results from this section suggest opportunities for further research into who is

most impacted by exposure to arsenic.
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5.2 Robustness

In all previous estimates, exposure to arsenic was calculated as the level observed in the
closest geographical well to the school. These measurements occur at different times and by
different sources, and many are coded as zeros. As discussed in the data section, this may
lead to an underestimation of the number of schools exposed to arsenic, biasing the results
toward zero and underestimating the true effects of exposure. To test how reliant my results
are on the composition of arsenic measures, I present two alternative measures of arsenic

exposure in Table [5]

Table 5: School Estimates by Arsenic Measure

Missed >20 Missed <5 Math Prof Reading Prof
Panel A: Closest Well

As > 3x Post -0.015* 0.019 0.021 0.021
(0.008) (0.013) (0.023) (0.023)

N 87,412 87,412 59,280 59,306

Panel B: Avg of 2 Closest Wells

As > 3x Post -0.009 0.016 0.027 0.040*
(0.008) (0.015) (0.034) (0.021)

N 108,044 108,044 63,551 64,888

Panel C: Max of 2 Closest Wells

As > 3x Post -0.008 0.011 0.025 0.028
(0.006) (0.013) (0.028) (0.019)

N 108,044 108,044 63,551 64,888

Notes: Standard errors clustered at the school level are shown in parentheses. Es-
timates are from the unweighted stacking regression of Equation (2) with 2002-level
controls for pupil-to-teacher ratio, percentage of students receiving free lunch, per-
centage of non-White students, and percentage of female students. All regressions
include district-by-year, year-by-stack, and school-by-stack fixed effects. Three sepa-
rate methods are used to determine arsenic concentration and associated treatment.
Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.

These alternative measures include an average of the concentration from the two closest
wells to the school and the maximum measure between the two closest wells to the schools.
By incorporating more nearby data points, these measures are expected to provide a more

comprehensive understanding of potential exposure as they may capture arsenic contamina-
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tion that the single closest well measure misses. Therefore, both measurements are expected
to reduce the impact of “zero” concentration measures in the data. All models retain arsenic
greater than three ug/L as the treatment variable and only change the method for producing
that dummy based on the above characteristics.

Results across models and outcomes remain relatively consistent. Significance of some re-
sults varies slightly between models, but conclusions remain consistent (Table . Across all
models, the average of the two closest wells exhibits coefficients with the highest magnitude,
yet the significance of results across these models does not change. Overall, these results
highlight that my specification is robust to using different measures for arsenic contamina-
tion, and noise from this measure is unlikely to influence the precision or interpretation of the
results. Further, the results of this paper reflect the most conservative estimation method of

only utilizing the closest single well measurement.

6 Discussions and Conclusion

This study aimed to investigate the impact of arsenic exposure on children’s educational
outcomes in the United States, specifically in Maryland. By expanding the pollution liter-
ature to include the impacts of arsenic, this research sought to understand the severity of
this public health concern. The findings of this paper suggest potential negative impacts of
arsenic exposure in Maryland on attendance and test scores, but further research is necessary
to validate these effect.

Across school and cohort models, the results indicated potential negative impacts of
arsenic exposure on high absenteeism, which should be interpreted cautiously for some out-
comes due to weak parallel trends in the pre-period. This result aligns with literature from
countries with much higher contamination levels that report negative attendance associated
with exposure. Further, while not significant, my results suggest arsenic exposure may neg-

atively impact math proficiency, fitting into a larger literature on environmental pollutants
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and cognitive outcomes. Unlike math, similar suggestions cannot be made for reading, whose
results vary across specifications and do not meet the required parallel trends assumption.

Heterogenous effects across schools and cohort analysis, as well as between elementary and
middle school specifications, suggest that arsenic’s impact might vary based on the duration
and length of exposure and the age of exposed students. Effects realized from cumulative
exposure to arsenic underscore the long-term effect suggested by significant impacts of arsenic
on the math and reading proficiency of middle school students, as well as improvements in
attendance after exposure was removed. This result expands the time horizon of exposure
in existing literature, which primarily focuses on early life exposure to pollution and finds
long-term effects. Potentially, these effects are realized as early as middle school and may
culminate into worsened life outcomes, an area for potential continued research.

The findings of this paper are limited by the structure of the data and the inability to
follow the same student over long periods of time and control for student-level characteristics.
While T attempt to exploit as much variation as possible using the cohort identification
presented in Appendix A, this proves insufficient to find statistical significance or balance
the noise in the arsenic measure, ultimately resulting in noisy results on how arsenic impacts
children’s educational performance.

The absence of student-level exposure data meant that exposure could only be used as
a proxy, reflecting students’ exposure in a school setting rather than at home. Although
these exposures were expected to be similar, there currently exists no way to measure this
without a tailored study. Additionally, arsenic measures from the closest well measured as
far back as the 1950’s, and with arsenic expected to increase in groundwater concentration
over time, this suggests my measures for arsenic may be an underestimation of the accurate
levels in students’ drinking water. Further, the arsenic data is littered with zeros, reflecting
the inability to accurately measure small concentrations of arsenic, which could bias results
downward further if children are affected by these small concentrations.

Overall, this paper attempts to uncover the effect of a sparsely researched contaminant
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and suggests there may be harmful effects on the health and development of children. I
provide some preliminary evidence that at levels below current regulatory limits, children’s
exposure may lead to physical and cognitive detriment and prompts the need for deeper
analysis within the health and economics literature. Further, this research provides the ba-
sis for future research on this topic. This research should focus on obtaining more granular
data on individual exposure levels and resulting health and education outcomes to establish
more definitive causal relationships, and those findings should be considered when policy-
makers revise water quality standards. Lastly, the lack of available exposure information
prompts the need for more rigorous testing procedures and more clear treatment protocols
to ensure the safety and well-being of students. In conclusion, this study highlights a need
for ongoing research and policy efforts to address pollutants and their impacts on human

capital accumulation, particularly in vulnerable populations such as children.
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A Additional Tables and Figures

Figure A.1: Elementary Event Study Plots
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Note: These plots are based on unweighted stacking regressions from Equation (1), limited to ele-
mentary schools, with 2002-level controls for pupil-to-teacher ratio, percentage of students receiving
free lunch, percentage of non-White students, and percentage of female students. All regressions
include district-by-year, year-by-stack, and school-by-stack fixed effects. The horizontal axis mea-
sures years since treatment, and the vertical axis reports the percentage point change in the outcome
of interest. Standard errors are clustered at the school level.
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Figure A.2: Middle Event Study Plots
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Note: These plots are based on unweighted stacking regressions from Equation (1), limited to middle
schools, with 2002-level controls for pupil-to-teacher ratio, percentage of students receiving free
lunch, percentage of non-White students, and percentage of female students. All regressions include
district-by-year, year-by-stack, and school-by-stack fixed effects. The horizontal axis measures years
since treatment, and the vertical axis reports the percentage point change in the outcome of interest.
Standard errors are clustered at the school level.
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B Appendix B: Cohort Results

This section includes a detailed analysis of the secondary specification using cohorts. A
cohort refers to a group of students within each school and start year. One main benefit
of this specification is that it enables me to estimate students’ length of exposure more
accurately. By estimating how long students have been exposed to arsenic exceeding three
ug/L, I can better understand cumulative impacts on math and reading proficiency. I explain
how these cohorts are constructed, followed by specifications that mirror those presented

within the paper at the school level.

B.1 Cohort Specification

Table provides a theoretical example of how these cohorts are built. For example, if
a third-grade student’s test scores at School A are observed in 2005, I then observe the
same cohort of students’ fourth-grade proficiency in 2006 and fifth-grade proficiency in 2007.
These students would be considered cohort “3”, which is a unique indicator of the cohort
within the school.

One main benefit of this specification is that it enables me to estimate students’ length
of exposure more accurately. I assume the same students whose test scores I observe have
attended school since kindergarten or sixth grade, depending on the school type. I extrap-
olate cohorts’ kindergarten start year from the observed grade and test year and compare
this to the schools’ first year of treatment, with the difference providing the number of years

exposed (if any).

Table B.1: Cohort Design

Cohort ID
School Year 1 2 3 4 5 6 7 8 9 10
School A
2000 5 4 3 2 1
2006 5 4 3 2
2007 5 4 3
School B
2005 5 4 3 2 1
2006 5 4 3 2
2007 5 4 3

To investigate the effects of exposure, I generate stacks by year of treatment h, mirroring

the stacking methodology of the school-level specification. Control cohorts remain those
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who do not begin treatment in the 11-year window (¢ = —4,..,6) around treatment year h
and include cohorts from all observed schools. The following specification is used to explore
heterogeneous effects by length of exposure across math and reading test scores, averaged

across treatment years:

Proficient sq;, = B1Arsenic, X Years.q, + [SoArsenic, + [3Years .y,

+ Xatagon * £+ 0an = t + Ocn + Opn + €csatn @

Here, Proficient ., identifies the percentage of students in cohort ¢, within school s in
district d in year ¢ who are proficient or better in math or reading. Arsenic, is equal to one
if arsenic exposure at school s is greater or equal to three ug/L and is determined by the
concentration of arsenic measured in the closest geographical groundwater well. Years.y, is
a continuous measure of the total years a student in cohort ¢ is exposed to untreated water
by year t. This measure is the difference between a student’s start year and the year water
treatment begins in school s, or the current year, whichever occurs first.

The coefficient on the interaction between these Arsenic, and Years.g, 51, measures the
impact of each additional year of exposure to three ug/L or more of arsenic over the student’s
tenure and provides an understanding of the impact of arsenic over time. The controls in
this specification, X002 - t, are the same as those in the school-level specification. District-
by-year fixed effects, dq4p, - t, are included to mitigate concerns of endogeneity of treatment
timing. Lastly, Cohort-by-stack (d.,) and year-by-stack (d;,) fixed effects are included, and
standard errors are clustered at the school level.

The continuity of treatment in this specification inhibits the use of event studies to test
parallel trends. However, I assume that because cohorts are nested inside of the school level
if parallel trends are satisfied for the school-level models, it is reasonable to assume they are

satisfied in the cohort regression.

B.2 Cohort Results

While the school results suggest the potential for arsenic exposure to negatively impact
students’ academic performance, the following section will expand these results at the cohort
level to gain more precision with cohort results from equation (2).

The findings for math proficiency outcomes are consistent across the school and cohort
specifications, suggesting that arsenic exposure may negatively impact math and reading
proficiency. The coefficients in Table can be interpreted as the cumulative effect of each
additional year of exposure to arsenic above three ug/L on the percent of students scoring

proficient or better in math and reading. Compared to the results from the school-level
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Table B.2: Cohort Level Summary Statistics

Never-Treated Treated Always Treated No Arsenic

As Concentration 4.899 6.100 4.572 0.000
(3.380) (15.568) (12.264) (0.000)
As Avg of 2 Closest 4.368 5.173 4.504 0.180
(2.839)  (8.494) (9.427) (2.381)
As Max of 2 Closest 5.020 7.507 6.437 0.359
(3.411)  (15.796)  (16.264) (4.761)
% Prof or Better Math 0.798 0.798 0.793 0.760
(0.160) (0.155) (0.152) (0.170)
% Prof or Better Reading 0.836 0.835 0.828 0.800
(0.103) (0.114) (0.116) (0.137)
Enrollment 513.935 388.831 599.191 592.570
(209.065)  (168.409)  (238.066) (229.485)
Pupil to Teacher Ratio 16.711 14.747 16.977 16.085
(2.181)  (2.186) (2.354) (2.968)
% Female 0.497 0.482 0.486 0.485
(0.026) (0.026) (0.023) (0.026)
% Non-White 0.149 0.161 0.268 0.492
(0.112) (0.125) (0.232) (0.341)
% Receiving Free/Reduced Lunch 0.215 0.279 0.256 0.331
(0.116) (0.149) (0.186) (0.230)
Years Exposed 5.847 4.548 0.096 0.755
(1.299) (2.152) (0.576) (1.927)
N 355 450 1,484 7,784

Treated and never-treated are both limited to schools with arsenic exposure greater than 0.

analysis, cohort results suggest the effect on test scores could be larger in magnitude. For
math proficiency, while not significant, the results suggest a 0.9 percentage point decrease
in math proficiency for each year exposed to arsenic contamination above three ug/L. For a
third-grade student, this translates to a 3.6 percentage point decrease, on a mean proficiency
of 80.4%. On average, students in treated schools are exposed for 4.5 years, accumulating
to as much as a 4.05 percentage point difference between treated and control schools.

Another similarity to the school-level results is the smaller effect of arsenic contami-
nation on reading proficiency. The same exposure would result in a 0.2 percentage point
decrease in test scores per year exposed, aggregating to a 0.9 percentage point difference on
a mean of 83.6% scoring proficient or better in reading. These results follow similar trends
to |Hollingsworth et al.| (2025) and [Jacqz (2022), as mentioned in the school-level results.

Overall, my results are difficult to compare to other pollution literature on students’
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test score outcomes because they use individual-level data and provide results as a standard
deviation change in test scores. The most similar and comparable result I find is from
Aizer et al. (2018)). This paper found that a "one-unit decrease in average blood lead levels
reduces the probability of being substantially below proficiency in reading (math) by 0.96
(0.79) percentage points on a baseline of 12 (16) percent”. While lead and arsenic may not
be directly comparable, my results are much smaller in magnitude, with each marginal ug/L
per year of arsenic exposure leading to only a 0.09 percentage point decrease in the percent

of students scoring proficient or better in math on a mean of 81.7%.

Table B.3: Cohort Results

Math Proficiency Reading Proficiency
Years Exposed -0.004 0.000
(0.003) (0.003)
Arsenic >3 x Years -0.004 -0.008
(0.014) (0.013)
N 69,808 69,788

Notes: Standard errors clustered at the school level are shown in parentheses. Estimates are from the un-
weighted stacking regression from Equation (3) with 2002-level controls for pupil-to-teacher ratio, percentage
of students receiving free lunch, percentage of non-White students, and percentage of female students. All
regressions include district-by-year, year-by-stack, and cohort-by-stack fixed effects. Significance levels: *
p < 0.1, ¥ p < 0.05, ¥*** p < 0.01.

B.3 Heterogeneity by School Type

When estimating equation (3) separately by school type, the cohort level regressions produce
similar outputs between elementary schools and the “all school” category, suggesting that
elementary school results drive the aggregate result within the cohort regression. For both
math and reading proficiency, the middle school-only regression produces significant results at
the 1% level that differ dramatically from the theoretical result and elementary and aggregate
results. The results suggest that each additional year of arsenic exposure increases proficiency
by 3.7 percentage points or 5.0 percentage points for math and reading, respectively (Table
. The likely reason for the dramatic difference in results is that they are driven by few
schools that may be experiencing some other shock simultaneously that is not controlled
for, as suggested by the drastically fewer observations for middle school regressions. These
results may be significant but should be cautiously interpreted due to the limited number of

schools.
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Table B.4: Cohort Results by School Type

Math Proficiency Reading Proficiency
All Elem Middle All Elem Middle
Years -0.004 0.001 -0.014 0.000 0.002 -0.003
(0.003) (0.003) (0.010) (0.003) (0.002) (0.006)
As>3xYears -0.004 -0.021 0.005 -0.008 -0.024 0.012%**
(0.014) (0.020) (0.007) (0.013) (0.016) (0.004)
N 69,808 51,093 15,020 69,788 51,073 15,020

Notes: Standard errors clustered at the school level are shown in parentheses. Estimates are from the un-
weighted stacking regression from Equation (3) with 2002-level controls for pupil-to-teacher ratio, percentage
of students receiving free lunch, percentage of non-White students, and percentage of female students. All
regressions include district-by-year, year-by-stack, and cohort-by-stack fixed effects. The sample was split
to retain only elementary or middle schools and run separately. Significance levels: * p < 0.1, ** p < 0.05,
K p < 0.01.

B.4 Cohort Results by Arsenic Measure

To test the robustness of my estimates on the decision of which wells to use to generate
the variable for potential exposure, I provide estimates using well concentrations from the
closest well, the average of the two closest wells, and the maximum between the two closest
wells (Table . For cohort math and reading proficiency, results are similar between the
closest well and max, the two closest wells. However, when using the average of two wells to
produce the treatment dummy for arsenic exposure greater or equal to three ug/L, results
become positive. These results would suggest that test scores improve each additional year
that they are exposed to arsenic contamination. However, it is also notable that all results
are small in magnitude and significantly insignificant, which could be a result of noise in the
arsenic measure. Lastly, arsenic exposure is observed at the school level and not the cohort
level directly, limiting the variation in these estimates further. Comparatively, school-level

results were similar, but the sign was consistent across all specifications.
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Table B.5: Cohort Results by Arsenic Measure

Math Proficiency Reading Proficiency
Panel A: Closest Well
Years Exposed -0.004 0.000
(0.003) (0.003)
Arsenic >3x Years -0.004 -0.008
(0.014) (0.013)
Panel B: Avg of 2 Closest Wells
Years Exposed -0.004 0.000
(0.003) (0.003)
Arsenic >3x Years 0.010 0.006
(0.010) (0.007)
Panel C: Max of 2 Closest Wells
Years Exposed -0.004 0.000
(0.003) (0.003)
Arsenic >3x Years -0.004 -0.008
(0.014) (0.013)
N 69,808 69,788

Notes: Standard errors clustered at the school level are shown in parentheses. Estimates are from the
unweighted stacking regression of Equation (3) with 2002-level controls for pupil-to-teacher ratio, percentage
of students receiving free lunch, percentage of non-White students, and percentage of female students. All
regressions include district-by-year, year-by-stack, and cohort-by-stack fixed effects. Three separate methods
are used to determine arsenic concentration and associated treatment. Significance levels: * p < 0.1, **
p < 0.05, ¥** p < 0.01.
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C Appendix C: Weighted Stacking Specification

Wing et al.| (2024) suggest that traditional stacking methods, as originally by Cengiz et
al.| (2019)) and used as the baseline for this paper, may be biased if the number of control
observations varies between treatment timings. To control for this bias, Wing et al.| (2024)
suggest weighting stacked regressions by the number of treated observations in each substack.
My results are consistent across methods. Cohort results are the same for the three decimal

places displayed, but they differ when the results are extended to five decimal places.

Table C.1: Cohort Regression Results, Unweighted and Weighted Specifications

Math Proficiency Reading Proficiency

(1) (2) (3) (4)
Years Exposed -0.004  -0.003 0.000 0.000
(0.003)  (0.003) (0.003) (0.002)

As>3 x Years Exposed -0.004  -0.003  -0.008 -0.008
(0.014) (0.015) (0.013) (0.013)

N 69,808 69,808 69,788 69,788
Weights 0 1 0 1

Notes: Standard errors clustered at the school level are in parentheses. FEach col-

umn corresponds to a separate stacked cohort regression of Equation (3). Models
include 2002-level controls for pupil-to-teacher ratio, percentage of students re-
ceiving free/reduced lunch, percentage of non-White students, and percentage
of female students. All regressions include district-by-year, year-by-stack, and
cohort-by-stack fixed effects. Columns (1) and (3) are unweighted; Columns (2)
and (4) use observation weights following [Wing et al.| (2024). Significance levels:
*p<0.1, ** p<0.05, ** p <0.01.
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Table C.2: Unweighted and Weighted School Results

Math Prof Math Adv Reading Prof =~ Reading Adv  Miss > 20 Days Miss < 5 Days
(1) (2) (3) (4) (5) (6) (7) (8) 9 (10) (1) (12)

Arsenic> 3xPost  0.021  0.021 0.016 0.015 0.021 0.021 0.005 0.005 -0.015% -0.015* 0.019 0.018
(0.023) (0.023) (0.027) (0.027) (0.023) (0.023) (0.015) (0.015) (0.008) (0.008) (0.013) (0.013)

N 59,280 47,056 59,280 47,056 59,306 47,076 59,306 47,076 87,412 67,687 87,412 67,687
Weights 0 1 0 1 0 1 0 1 0 1 0 1

Notes: Standard errors clustered at the school level are shown in parentheses. Estimates in odd columns are from the unweighted specification by |Cengiz
et al.|(2019), and estimates in even columns are from the weighted specification suggested in [Wing et al.|(2024), based on Equation (2) with 2002-level
controls for pupil-to-teacher ratio, percentage of students receiving free lunch, percentage of non-White students, and percentage of female students. All
regressions include district-by-year, year-by-stack, and school-by-stack fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01.
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